Home » A Ridiculously Detailed Look At How Ford Engineered The 2022 Ford Bronco Raptor To Be A Hardcore Purpose-Built Off-Road Monster

A Ridiculously Detailed Look At How Ford Engineered The 2022 Ford Bronco Raptor To Be A Hardcore Purpose-Built Off-Road Monster

Bronco Raptor Top
ADVERTISEMENT

The Ford Bronco is already a hardcore off-road beast. Especially with its optional 35-inch monster-truck tires, the vehicle is tall, heavy, relatively noisy, not particularly agile in the corners, and clearly makes plenty of compromises to go toe-to-toe off-road with the legendary Jeep Wrangler. And yet, for reasons only those in Dearborn’s Glass House can tell you, Ford decided it needed to offer an even more hardcore version. It’s called the Ford Bronco Raptor, and it takes a vehicle that I thought could only possibly be made slightly more hardcore while remaining street legal, and cranks the intensity up so high it rips the dial right off. I crawled the widebody Bronco up a gnarly boulder-filled trail and then blasted 60+ mph over a makeshift racetrack in the desert, and I’ll tell you straight-up: I’m still in shock. The Ford Bronco Raptor is madness.

As some of you may know, I’ve been hitting off-road trails in Jeeps since I was just a young teenager. These experiences inspired me to get an engineering degree and work at Jeep, where I helped develop the JL Wrangler. I off-road my vehicles frequently, and oftentimes I destroy them in deep mud puddles. I mention this only to communicate where I’m coming from when I say things like “The Ford Bronco Raptor is madness.” It really is a tremendous feat of off-road engineering, and Ford was so confident of this fact that it sent journalists up some genuinely treacherous trails.

Vidframe Min Top
Vidframe Min Bottom

[Full Disclosure: Ford flew me to Palm Springs, California to show me what the Ford Bronco Raptor could do in the wide-open desert and on the boulder-filled trails of one of the world’s toughest off-road races: King of the Hammers. It’s likely that the sum of the prices of the two nights at the hotel and the meals the company bought me eclipsed the cost of my recently-acquired 2000 Chevy Tracker off-road beater. That’s right, two days of food and lodging probably cost more than my car; needless to say, I had to fake it ’til I made it (pinky up when drinking, use big words, talk about stock portfolios — I know how it goes).]

[Editor’s note: Nobody was fooled, David. – JT]

ADVERTISEMENT

Before we get into my on and off-road driving impressions, we need to talk with some engineers about the hardware that makes the Bronco Raptor different from the ordinary Bronco.

A Look At The Hardware

20220608 181229

If you’re familiar with how the Ford F-150 Raptor differs from the standard F-150 pickup, then you’ll probably have a good idea of what Ford did to the Bronco to Raptor-ify it. The body is wider by nearly 10 inches to stretch over broader axles; the tires are larger at 37 inches in diameter, making them the biggest-ever standard tires on any consumer-grade Ford; the suspension and steering have been been redesigned to take a beating off-road and to afford absurd levels of wheel travel; the shocks are fancy Fox Internal Bypass units meant to handle lots of plunging over uneven surfaces at high speeds; the engine is significantly more powerful at 418 horsepower versus 315 on the V6 standard Bronco; the exhaust is louder; the styling of the fascias and hood is also louder; and much of the vehicle has just been covered in skid plates and/or toughened up a bit to handle higher loads associated with bombing along a desert at ludicrous speeds.

Given that the Bronco Raptor is built on the base Bronco platform, which is already so capable, you may be wondering how much engineering actually went into the Raptor-ification process. Take the Bronco, modify the fenders a bit, add a small lift to fit the 37-inch all-terrain tires, and you’re good to go, right? Not quite. I spoke with Ford’s engineers to learn more about what went into turning the off-roader into a Raptor, and they basically broke the challenges they faced into three main areas: Packaging, handling (with “roll steer” being the primary topic of discussion), and durability/stiffness.

ADVERTISEMENT

To get us started, we need to talk about one of the main differences between the Raptor and the non-Raptor Bronco: the dimensions.

Why The Huge Tires And Why The Wide Stance?Screen Shot 2022 06 19 At 8.55.04 Pm

Big Tires To Protect The Hardware And Improve The Ride 

There are some real functional benefits to that menacing stance beyond just badass looks. The big tires help for reasons that are probably fairly obvious: They increase ground clearance, as well as approach, departure, and breakover angles, protecting the vehicle’s vulnerable bits from rocks and bumps and inclines and anything the Bronco wants to drive over or onto.

Perhaps more importantly, those big tires improve ride quality over extremely harsh terrain; it’s not just that the huge sidewalls can flex to soften the blow of a rock in the middle of the trail, it’s the fact that, relative to 37-inch tires, that rock may as well be a pebble. The relative size of an obstacle to a tire’s diameter plays a big role in how much harshness that obstacle can impart on the ride, so those giant meats are there for a reason. Obviously, they’re heavier than smaller tires, and that has some negative handling implications, as the unsprung weight means the suspension can’t react as quickly to “follow” uneven terrain, but it’s a tradeoff, and one that — as I’ll discuss later — appears to have been a good one.

A Wide Track To Reduce Load Transfer, Fit Big Tires, And Allow That Suspension To Flex

ADVERTISEMENT

Okay, so that’s a bit about why the Bronco Raptor is so tall; now let’s talk about width. There are a number of benefits of that ridiculously wide track. The obvious one is that it helps package the big tires (we’ll talk about packaging soon), but there are also dynamic implications.  I won’t pretend that I’m an expert on these, since I was never a suspension engineer, but I do know that a wider track can help reduce load transfer, which is defined by the following equation:

Image for article titled 2019 BMW 3 Series: The Engineering Behind the Handling Improvements
As you can see, a heavy vehicle whose center of gravity has been raised by a taller suspension and bigger tires is likely to see lots of load transfer in corners compared to a vehicle with a lower center of gravity. Load transfer is less than ideal, since overall vehicle grip is maximized when vertical loads are shared as evenly as possible among all four tires (this is due to tire-load sensitivity; basically, tire grip gets worse with tire load — you can learn more about that in my article on the BMW 3 series from a few years back).
(It’s also possible that a wider track can improve ride quality, as moving springs outboard away from a vehicle’s roll center could theoretically help those springs mitigate the vehicle’s tendency to lean (or “roll”), meaning those springs can be softer, offering a nicer ride. (Imagine trying to push a teeter-totter from the end versus near the fulcrum; a spring farther from that fulcrum can be softer and still resist motion). Admittedly, the base Bronco already had its springs and dampers mounted far outboard and fairly vertically, so I’m not really sure that this is a huge factor, here).

Screen Shot 2022 06 19 At 10.21.43 Pm

A large track width is also important in facilitating the high suspension articulation that the Bronco Raptor needs to turn large rocks into fluffy pillows, and not just because the width helps package a big tire’s huge motion envelope. There are mechanical benefits of a wider track in aiding suspension flex; this is particularly important for vehicles with independent front suspension, and it’s one of the drawbacks that solid axle-diehards often tout.

The Ford Bronco is built on the Ford Ranger’s “T6” platform, so up front is an independent front suspension, which itself offers a number of handling benefits over a solid axle and makes it easier to package a rack-and-pinion steering setup (which is far more precise than a steering box setup found on solid axle vehicles). The suspension consists of two control arms — an upper and lower A-arm — hooked to, in the case of the Bronco Raptor, a modified version of the Ford F-150 Raptor’s steering knuckle.

Screen Shot 2022 06 19 At 11.58.19 Pm

ADVERTISEMENT

When the wheel moves up and down over bumps, the control arms are pivoting/rotating about their mounts on the frame. In order to have lots of vertical wheel travel to absorb bumps, those arms have to swing quite a bit. This can be a bit of an issue, because at a certain point, the ball joints located where the control arms meet the knuckle will bind up; the same could happen at the ball joint between the tie rod and the knuckle.

20220608 183308

Perhaps more concerning is the fact that the axle that sends power to the wheel also has to swing in an arc during suspension travel. As you can see in the image below, the angles of the CV joints that allow those axles/halfshafts to send power to a wheel that is both moving up and down over bumps and side to side during steering become quite steep as the suspension droops. At some point, the joints could bind up, and even if they don’t, their service lives are reduced when they run at a steep angle.

20220609 121314

So how do you lift a vehicle (which itself causes the arms to swing), and build in plenty of additional suspension travel without causing issues with ball joints/CV joints binding or possibly failing too soon? Well, you lengthen the control arms. Basically, you want to maximize the length of the arc that the ends of the control arms sweep (since these arcs are related to overall up-down wheel travel) while minimizing the degrees those arms have to swing.

ADVERTISEMENT

Since the equation for arc length is Arc Length (s) = radius (r) * angle swung (theta), you can see that to minimize the angle that the arms and axles swing while maximizing travel (s), you need to make the control arm (r) as long as possible. This is probably something you can visualize in your head.

s = r \theta

 

The other reason for the high ride height and wide track width is packaging. Let’s get into that now, and then dive into the other packaging challenges that Ford faced.

Packaging

Tire 1

ADVERTISEMENT

Thirty-seven inch by 12.5-inch tires are big. Hell, they’re humongous. And while your friend Steve probably has a set of them under his Jeep Wrangler JK, make no mistake: Packaging these things is difficult.

When automakers package tires, they build what’s called a tire envelope (at least, that’s what it was called at Chrysler; it looks like the one in the .gif above). A tire envelope is basically a virtual “blob” made using Computer-Aided Design software; it represents a tire’s full range of motion, both along the Z-axis (i.e. up and down during a bump) and about the Z-axis (i.e. during turning), plus it accounts for slop in steering and suspension parts (bushings, etc). I asked Ford if they could send me the tire envelopes for the Bronco Raptor, but they said no; I’m a little disappointed, because I bet they’re enormous.

Anyway, the point here is that shoving 37s on a car is not easy. And while additional ride height and track width to keep that big black blob away from the body and frame definitely help, Ford still had to get creative to make those big meats fit and to allow that suspension to travel 13 inches up front and 14 inches in the rear. One packaging challenge was the rear damper piggyback, which had to be angled “down” relative to the coilover in order to prevent the tire from rubbing against it when that side of the Bronco Raptor is “stuffed” (i.e. the suspension is compressed).

20220608 183806

Also in the rear is a giant bend in the tailpipe to clear that bouncing, 9.25-inch ring gear-equipped Dana 50 rear axle:

ADVERTISEMENT

20220609 122533

20220608 183814

Up front the control arms have been shaped precisely to clear not just parts of the body, but also the tire and spring:

Screen Shot 2022 06 20 At 1.09.44 Am

Here’s a closer look at that inside bit of the control arm, where it has to avoid the spring:

ADVERTISEMENT

Screen Shot 2022 06 20 At 1.18.19 Am

And here’s the part of the body that necessitated that dip in the control arm:

Screen Shot 2022 06 20 At 1.16.44 Am 1024x582

Of course, the biggest changes that helped facilitate the massive tires and high-travel suspension were the SMC composite front fenders and rear quarter panels, which remain far away from the tires even when the vehicle is experiencing extreme suspension flex

Screen Shot 2022 06 20 At 1.37.31 Am

ADVERTISEMENT

Handling Challenges

So packaging was a big part of the Bronco Raptor’s engineering story, but there’s a lot more to the vehicle’s development than that. One thing that Ford engineers mentioned a lot was the concept of “roll steer.” This is the tendency of a suspension to — by virtue of its kinematics (i.e. its inherent geometric design) — turn when it compresses or rebounds, particularly in a turn. That’s right, even if you don’t change your steering angle, the vehicle’s front and rear wheels will literally turn as a function of the suspension “lean” in a corner.

This behavior allows Ford to dial in the vehicle’s handling, and to make sure the SUV tends towards a slight amount of understeer (less in this case than on a less sporty vehicle, a Ford engineer told me) at the limit. Here’s a quick definition of roll steer via the book How To Make Your Car Handle:

“[Roll steer] is steering of the rear wheels as as the car leans. Even cars with a solid rear axle can have roll steer, and many indeed have this characteristic built into the car. production car manufacturers use roll steer to give the car a high degree of understeer in a corner. Sometimes it is used to counteract the oversteering characteristics of a rear engine car.

When you lift a vehicle, especially if you make changes to major suspension components like control arms and axles, you’re likely to affect a vehicle’s roll steer characteristics, which Ford defines as angle of vehicle roll per degree of steering. The company has a goal for this figure (roughly five percent, though this figure might be degrees of steering per meter of suspension travel — I can’t remember), and meeting that goal while trying to jack up suspension height took real work. To understand this better, let’s look exactly at how roll steer works for both the front and rear suspension.

Front Suspension Roll Steer

Screen Shot 2022 06 20 At 10.01.05 Am

ADVERTISEMENT

Visualizing roll steer at the front suspension isn’t particularly difficult. You can see that the tie rod — which is tasked with pushing and pulling the steering arm that’s cast into the knuckle — swings in an arc as the suspension moves up and down, just as the upper and lower control arms swing in an arc. The relationship between the arcs that the tie rod and suspension arms (especially the lower, since the tie rod is closer to it) swing dictates the degree to which suspension movement tries to put that tie rod into compression or tension, changing the knuckle’s “toe” angle, and thus steering the vehicle.

Screen Shot 2022 06 20 At 7.37.08 Am

Looking at the front suspension image above, which shows the driver’s side front suspension from the front, imagine the vehicle takes a right turn (the tire is turned a bit to the left in the image above; ignore that). Body roll would cause this outside suspension shown above to compress, so the control arms and tie rod end would swing upwards. The relationship between these arcs would cause the tie rod end to be forced outward relative to the knuckle’s steering axis, causing the vehicle to turn to the left during that right turn, creating an understeer behavior.

Rear Suspension Roll Steer

Screen Shot 2022 06 20 At 8.05.21 Am

ADVERTISEMENT

Solid rear axles also have roll steer built in, even though there’s no steering tie rod to change toe, and Ford had to make sure it could achieve its roll steer targets after lifting the Bronco up during the Raptorification process.

The rear axle steers during suspension travel via a change in “thrust angle” — in other words, the entire solid axle has a tendency to essentially “yaw” as one side moves up and down relative to the other. During a turn, the axle will tend to want to face inwards towards a turn, offering a stabilizing understeer effect. So while the outboard wheel (which has more vertical load on it, and thus has more responsibility to provide grip) at the front suspension tends to turn away from a turn during compression/roll, the outboard rear wheel is designed to turn in the same direction during compression/roll.

Suspensiondesigner.com, a website run by a suspension-design software company, breaks down roll steer (or “bump steer”) a bit, writing:

Positive bump steer gives a toe in tendency with suspension bump and negative bump steer gives a toe out tendency with suspension bump.  As suspension systems are typically tuned to have a level of understeer, front axles typically have negative bump steer (toe out, understeer tendency on the front axle) and rear axles typically have positive bump steer (toe in, understeer tendency on the rear axle).

Like the front suspension, the rear suspension’s roll steer is a function of its kinematics, and can be visualized by looking at the arcs traveled by the control arms; there are four of those arms, pointed out above. These control arms run fore-aft parallel to the vehicle’s longitudinal axis. As they swing in their arcs, they push and pull the axle fore-aft. During suspension roll, the control arms on one side of the vehicle will be at a different point in their arc swings than the control arms on the other side, essentially pulling one side of the axle forward and pushing the other side back, changing the heading (thrust angle) of that rear axle.

Screen Shot 2022 06 20 At 8.19.35 Am

ADVERTISEMENT

If you look at the image above, you may be thinking: “If I turn to the Bronco Raptor to the right and load up this rear left suspension, then under compression, the left side of the axle will be pushed backwards, and the right will be pulled forwards, essentially “steering” the rear axle to the left, in the opposite direction of the turn.”

That’s actually not the case because the image above of the body-less chassis does not represent how the control arms sit at ride height. Here, as you can see in this image, at ride height, the control arms are essentially level:

Screen Shot 2022 06 20 At 1.55.32 Pm

This means that, as you compress that left rear suspension during a right turn, the control arms on that side of the axle would arc upwards, and actually pull the axle forward, steering the rear axle to the right, in the same direction is the turn, inducing the desired understeer.

It should be clear that the control arms are in their arc-sweep at the vehicle’s nominal ride height is critical (roll steer is clearly not linear) in setting its handling characteristics, which is why lifting the Raptor wasn’t as straightforward as one might think.

ADVERTISEMENT

Why This Introduced Such A Challenge

Getting that lower control arm in the image above to sit relatively level to yield the right roll steer characteristics took some work. It required Ford to move the axle mount as high as possible, and the frame mount as low as possible. The problem with moving the lower control arm’s axle mount up is that there’s a hard limit: the centerline of the axle. Why? Because that lower control arm has to work in conjunction with the upper control arm to prevent “axle wrap,” the tendency of that rear stick axle to want to rotate about its axis under acceleration and braking.

Screen Shot 2022 06 20 At 8.46.48 Am

As you can perhaps visualize, if that lower control arm’s axle mount were above the axle’s centerline, it would be unable to counter axle rotation. You’d essentially have two upper control arms, with an axle dangling off it below. This would be underivable.

This meant Ford had to lower the frame mount considerably, hence the big, blue lower control arm bracket shown below. It sits lower than the standard Bronco’s lower control arm mount, but I wouldn’t exactly call it rock bait; it’s still way up off the ground. (If you’re curious what that silver block is on the frame, I think it’s some kind of controller for the semi-active suspension).

20220608 183338

ADVERTISEMENT

Leveling out the upper control arm to help the vehicle get the desired five degrees of steering angle per meter of suspension travel (or however Ford measures it) was also nontrivial, since the frame crossmember mount wasn’t something Ford wanted to change, as it had been optimized for the fuel tank and exhaust package. As a result, the rear axle’s upper control arm mounts tower well above the axle tube:

Screen Shot 2022 06 20 At 2.01.19 Pm

As for the front suspension, the lower control arm hard points are the same as those of the standard Bronco. With the lift and the longer control arms, the taller suspension changed how the vehicle steers as a function of roll. As a Ford engineer told me, lifting the Bronco meant the vehicle is now “operating at a different region when we’re on-road.” In other words, the ride height is now at a different point in the control arms’/tie rods’ swinging arcs.

Screen Shot 2022 06 20 At 9.14.17 Am

The change in ride height brought with it a new nominal location along the control arms’/tie rods’ arcs, and because — as previously mentioned — roll steer isn’t linear, the new “starting point” changed how additional suspension motion (during roll) affects steering. So, to hit their roll steer targets, Ford engineers adjusted the height of the knuckle’s steering arm to make sure that tie rod pushes and pulls in just the right way as the vehicle rolls.

ADVERTISEMENT

Durability/Stiffness Challenges

Screen Shot 2022 06 20 At 9.35.57 Am

As you may imagine, designing a vehicle to handle the absurd loads associated with sending a 5,700 pound vehicle on high-speed desert trails involves beefing up some parts. On the Bronco Raptor, that means newer, tougher coilover mounts on the frame at the front and rear, as well as auxiliary jounce bumpers [Editor’s note:Jounce” sounds like a word David made up  just now, but I know it isn’t. But it sounds like it. – JT] to help the ones built into the dampers when the suspension bottoms-out.

Because I’m a bit obsessed with packaging, I’ll note that those new jounce bumpers required re-shaping of the front sway bar ends:

Screen Shot 2022 06 20 At 9.39.36 Am

The shock towers — based on the Ford F-150 Raptor’s (the damper architecture — i.e. the structure, but not the valving — between the two vehicles is also the same) — aren’t just “tougher,” they’re taller, and that means the suspension loads have a larger “lever” to try to twist the frame to which those towers are welded. To combat this, Ford added reinforcement to the frame. Chassis engineer Andy Lane referred to it as a “doubler plate that increases the torsional stiffness to allow for the shock tower load

ADVERTISEMENT
Share on facebook
Facebook
Share on whatsapp
WhatsApp
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Subscribe
Notify of
58 Comments
Inline Feedbacks
View all comments
TJ996
TJ996
2 years ago

Without doubt, the best coverage I’ve seen. I’m not interested in the regular Bronco, but this peaks my interest. Probably way too big though. I’d like to see a video of one on Moab Rim. It’s too bad no one in Moab rents any sort of Raptor. It’d be interesting to compare a Jeep and a Raptor back to back on a road like Gemini Bridges. I feel like I always have to go slower on that road than I’d like because the ride gets too jarring at higher speeds.

TheNextOne
TheNextOne
2 years ago

Thanks for the deep dive, DT!

Loren
Loren
2 years ago

Good to have covered the roll-steer aspect. F’d-up roll steer is what makes most lifted Jeeps so awful on the highway, and Ford apparently didn’t want none o’ that.

Endusone
Endusone
2 years ago

I kind of wanted a Bronco, but with what I’ve put in to my FJ (money, but also hours and hours of wrenching) it didn’t quite tip the scales. This tips the scales handily, though 70K would be tough to swallow.

It seems like there are a lot of love letters to fossil fuels being composed in the form of really excellent cars these days. It won’t be long before vehicles like this are a thing of the past.

Hangover Grenade
Hangover Grenade
2 years ago

It’s funny how Jalopnik’s review was on the verge of calling it a sports car in terms of on-road handling.

Dave Horchak
Dave Horchak
2 years ago

Wow this article is so long I didn’t know David Tracy knew this many words.
What I take from this is really how hard Ford worked to make a vehicle noone will want.
Now I get this thing has all kinds of crap in it to make the average daily commute better. I also get that it might be better than a human driver, maybe because computers fail a lot. But why would anyone buy it? If I am into 4 wheeling I want to manhandle this beast over rough terrain to prove my mettle. I have no interest hiring an expert to drive a vehicle over wild terrain while I sit in the passenger seat. What do I tell other 4 Wheelers? My vehicle is so good I hired an expert to drive it in bad terrain and he did good? This isn’t horse racing where you hire a jockey. Also if the vehicle capability is so good anyone can take on the roughest trail What next Elons 2nd level autopilot programmed for trails and the we just sit in the passenger seat. What next Disney World rides based on trails around the world? Hey with enough money I can take a helicopter to both the north and south pole in 24 hours. Should that surpass Admiral Byrd doing it in wind powered boats and dog sleds? Hey get a helicopter to take you up to the top of Everest. Beat everyone’s time. Ooh I have the record. Jeep realizes their customers want to be part of it. No manual Bronco means Ford doesn’t get it. I’m surprised DT doesn’t because he is more about the journey than anyone I know.

Frednass
Frednass
2 years ago
Reply to  Dave Horchak

No one will want?! First year sold out, adm’s O plenty, demand is certainly there Regardless…These arnt intended to be mass produced. Let’s just concede that these things are awesome. These journalists and professional drivers seem to think so.

unclesam
unclesam
2 years ago

Super interesting from an engineering standpoint. Given the overlap with the F-150 raptor, the purpose-built nature of this makes it much cooler to me than the truck which seems like it starts from a compromised position. I’m prepared to admit I could be wrong about that, but I’m not in the market for either so I’m sure Ford cares less than nothing what I think.

It’s still going to make me angry to see these parked, freshly detailed, outside whole foods, as these are actively antisocial if used only as a lifestyle accessory, but so are any number of other things. At least they aren’t fun on the road?

Ron888
Ron888
2 years ago

I love the level of detail you show David

FreshCakes
FreshCakes
2 years ago

What about the tail lights? -Torchinsky

Idle Sentiments
Idle Sentiments
2 years ago

New Bronco. What a joke to the humble purist.
Thanks for the laugh Ford.
I already don’t care.
I had crawler’s with tires that big before anyone paid attention to tire size.

I have boulder scars on my rib cage from tipping a Jeep when I was nine years old.

I’ve got half blind welders eyes starring back at you.

Get off my trail you wealthy untrained “enthusiasts”.

Get your $90,000 behemoth out of my way.

This isn’t for you.

Idle Sentiments
Idle Sentiments
2 years ago

I’ve had cheese farts that will stink longer than this $70,000+ Bronco love will last.
It’s a stupid vehicle for stupid people with more dollars than brain cells.
Give me a classic “lunchbox” in the same price range and I’ll be much happier.

Frednass
Frednass
2 years ago

Spoken like a small jealous man. You know better than the author huh? And the numerous professional drivers/journalists that ACTUALLY DROVE them?! Lol. Stupid ppl huh? Last I checked, by in large, it takes SMARTS to have “dollars”. Never understood clowns like you, EVEN IF I didn’t like a vehicle, I don’t trash ppl that do. Especially something that is as mechanically awesome as this is. Must suck to have so such hate inside. Can only imagine the temper tantrums you will have when u actually see them on the road.

Frednass
Frednass
2 years ago

If u “don’t care” keep it moving. Many ppl do, including the author of this article. Let ppl do what makes them happy, u sound like an elitist. As long as they are being safe and have the proper decorum on the trails….have at it. It’s not “your trails”.

58
0
Would love your thoughts, please comment.x
()
x